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In a recent experiment �Müller et al., Phys. Rev. A 79, 031804�R� �2009�� reported a splitting of the
stochastic resonance peak, which they attributed to the asymmetry of an effective double-well restoring po-
tential in their optomechanical read-out device. We show here that such an effect, though smaller than reported,
is indeed consistent with a characterization of stochastic resonance as a synchronization phenomenon, while it
proves elusive in terms of spectral quantifiers.

DOI: 10.1103/PhysRevE.81.012102 PACS number�s�: 05.40.�a

I. INTRODUCTION

Stochastic resonance �1,2� is by now a textbook example
of how noise can best enhance the response of a bistable
system to an external periodic drive. Historically, the re-
search on stochastic resonance �SR� focused on symmetric
bistable systems, either continuous or discrete �3–5�. Asym-
metry effects have also been taken into account, mostly by
tilting an otherwise symmetric double-well potential �6,7�.
This led to the appearance of deltalike spikes for both odd
and even multiples of the drive frequency in the power spec-
tral density �p.s.d.� of the system output. The spikes of all
harmonics were found to go through a maximum as a func-
tion of the noise intensity and the tilt. In particular, when
plotted versus the noise intensity, the strength of the first and
most prominent spike, corresponding to the drive frequency,
was reported to exhibit a characteristic single broad peak,
termed SR peak; asymmetry was observed to degrade the
magnitude of the SR signature, without affecting the overall
picture �5�. An analysis in terms of residence time distribu-
tions �8� failed to add insight to the above picture: The asym-
metry of the confining potential was deemed solely respon-
sible for the onset of the even spectral spikes in the output
p.s.d. of systems undergoing SR �1�.

In a recent experiment, Mueller and co-workers �9,10�
investigated an optomechanical torsion oscillator confined to
two skewed �asymmetric� stable states. They characterized
the system response to an external ac drive in terms of a
synchronization quantifier, named degree of coherence and
denoted here C, which is defined as the ratio of the total
number of interwell transitions around the signal half period,
to the total number of possible transitions. Contrary to the
case of SR in symmetric bistable systems �1,11�, C was ob-
served to develop two distinct maxima when plotted versus
the noise intensity. Mueller and co-workers attributed such a
“SR splitting” to the interplay of the unavoidable interwell
and intrawell asymmetries built in the restoring potential of
their torsion oscillator.

In this Brief Report, we numerically investigate SR in an
asymmetric double-well �ADW� potential obtained by de-
forming a symmetric one, so that the energy barrier opposing
transitions to the right and to the left stays the same. Numeri-

cal simulation allows a better control on the potential shape
and a direct quantitative comparison between synchroniza-
tion and spectral manifestations of the SR phenomenon. We
conclude that double SR �the “splitting SR” reported in �9��
is a peculiar, though relatively small, synchronization effect
without a sizable spectral counterpart.

II. MODEL

In order to focus on the role of the sole intrawell asym-
metry, which is on the different skewness of two competing
binding wells, we adopted the following deformable ADW
potential �12�,

V�x� = V0� �1 − exp�− b+�x + 1����1 − exp�b−�x − 1���
�1 − exp�− b+�x0 + 1����1 − exp�b−�x0 − 1����

2

,

�1�

with potential minima set at x= �1. The parameters x0 and
V0 have been introduced for convenience, respectively to de-
note the position of the barrier and its height, �V. The tun-
able parameters b� control, besides x0, the potential curva-
ture both at the bottom of wells, ��

2 =V���1�, and at the top
of the barrier, �0

2= 	V��x0�	. The ADW potential Eq. �1� used
in our simulations is sketched in Fig. 1. Note that the energy
barrier �V is the same for both transitions �→�, i.e., ac-
cording to the notation of �9�, we suppressed the interwell
asymmetry. Moreover, in order to enhance the effect of the
intrawell asymmetry, we set the curvature of the negative
well far smaller than that of the positive well, �−��+.

An overdamped Brownian particle diffusing in the poten-
tial Eq. �1�, subjected to a sinusoidal drive of amplitude A
and angular frequency �, is described by the Langevin equa-
tion,

ẋ = − V��x� + A cos��t − �� + 	�t� , �2�

with A
0 and � an arbitrary constant. Here, 	�t� denotes a
Gaussian white noise with zero mean and intensity D, that is

	�t�	�t���=2D��t− t��.

The dynamics of Eq. �2� was numerically simulated by
means of a standard algorithm for the integration of stochas-
tic differential equations. The residence time distributions
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and the spectral properties of the stochastic process x�t�
could be determined with high numerical accuracy and ex-
tremely good statistics �1�.

III. DOUBLE STOCHASTIC RESONANCE

Following the approach of �9�, we determined the normal-
ized distributions of the residence times T in the positive,
N+�T�, and in the negative potential wells, N−�T�. Corre-
spondingly, one can interpret N��T� as the distributions of
the waiting times, respectively, for the right-to-left and left-
to-right transitions. According to the so-called bona fide SR
scheme �11�, such distributions peak at the odd multiples of
the half-driving period, Tn= �n− 1

2 �T�, with n an integer, and
T�=2� /�. More importantly, under the synchronization
condition �1,11�

T� = 2TK
�, �3�

the main SR peak of N��T�, i.e., the peak with n=1, domi-
nates both over all higher order peaks, with n1, and over
the exponential background of the random �or incoherent�
switches. Here, TK

� denote the average waiting times for the
unbiased, A=0, random switches to the left and to the right,
respectively. For relatively small noise intensities, D��V,
these two escape times can be safely approximated by means
of Kramers’ formula �13�,

1

TK
� =

���0

2�
exp�−

�V

D
� . �4�

The peak structures of N��T� in Fig. 2 display a clearly
distinct D dependence: The SR synchronization condition for
N−�T� tends to occur at values of D higher than for N+�T�.
We have, thus, recovered numerically the asymmetric syn-
chronization mechanism earlier reported by Mueller and co-
workers �9�.

For a more quantitative analysis of such a mechanism, we
introduced the following definition of degree of coherence,
namely,

C� = �
1
2

�T�−�t�

1
2

�T�+�t�
N��T�dT . �5�

C� denotes the fraction of the waiting times �in the x= �1
well� that fall within a time interval �or bin� �t centered
around the half-driving period, T� /2. C� can be regarded as
a measure of the magnitude of the first N��T� peak. In the
main panel of Fig. 3 we display C� versus D for different
drive amplitudes and the same small ratio �t /T� as in �9�.
Moreover, for the sake of a comparison with �9�, we also
plotted the average C̄= 1

2 �C++C−�, which coincides with the
coherence quantifier, C, measured experimentally by Mueller
and co-workers.

The effects of intrawell asymmetry on the SR mechanism
taking place in the ADW potential Eq. �1� are now apparent:
�i� The curves C� peak at different noise intensities, D�,

with D+�D−; �ii� The curves C̄ exhibit a prominent peak in
correspondence of the C+ maxima and a hardly detectable
side bump in correspondence of the C− maxima. The curves

C̄�D� are our numerical counterpart of the plot shown in Fig.
4�d� of �9�; �iii� The position, D�, of the C� peaks are con-
sistent with the synchronization condition �3�. In particular,
we checked numerically that

D− − D+

D+D−


1

�V
ln��+

�−
� , �6�

as one would expect on combining Eqs. �3� and �4�. The
approximate equality Eq. �6� only applies for ADW poten-
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FIG. 1. �Color online� Our model ADW potential Eq. �1� for
b+=0.5, b−=5 and V0=1. The barrier turns out to be centered at
x00.5 and �V=1 high. The curvatures of the potential at x= �1
and x0 are, respectively, �−

2 =2.1, �+
2 =85.2, and �0

2=5.7.
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FIG. 2. �Color online� Residence time distributions N��T� in the
ADW potential Eq. �1� for different values of D �in the legends�.
The subscripts � denote the transitions, respectively, right-to-left
and left-to-right �see text�. Other simulation parameters: A=0.2,
�=0.2 and the ADW parameters as in Fig. 1.
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tials with the same switch energy barrier, �V, in both direc-
tions, i.e., in the absence of interwell asymmetry.

At this point, a few important remarks are in order. For
the small time bins employed both here, in Fig. 3, and in �9�,
the quantities C� are linear in �t, that is C��tN��T� /2�.
Moreover, in the limit of vanishingly small drive amplitudes,

the curves C��D� and C̄�D� grow insensitive to A. Indeed,
for zero drives, N��T�=exp�−T /TK

�� /TK
� �13� and the func-

tions C��D� and C̄�D� can be shown analytically to fit our

numerical data. In particular, C̄�D� develops a “split” profile
even for A=0 and arbitrary T�, which only proves the exis-
tence of two different Kramers’ rates, TK

�. Such an artifact of
the coherence quantifiers Eq. �5� grows negligible in the non-
linear regime, i.e., for larger time bins, �t, or larger drive
amplitudes, A. However, as shown in the inset of Fig. 3, no

prominent double SR C̄�D� peaks were detected under such
conditions, either.

In conclusion, our numerical study corroborates earlier
observations �6–9� according to which the synchronization
conditions over a skewed potential barrier depend on the
orientation of the transitions. However, the ensuing “SR
splitting” effect appears to be far less significant than re-
ported by Mueller and co-workers �9�.

The existence of a double SR has be regarded as a mere
synchronization effect. In fact, no splitting of the SR peak
was detected in the spectral analysis of the stochastic process
x�t�. When subjected to a low-frequency periodic drive, the
time periodic response of the cyclostationary asymmetric
process Eqs. �1� and �2� is characterized by the appearance of
deltalike peaks in its p.s.d., S���. Such peaks emerge from
the spectral background of the random �or incoherent�
switches, and are located at �=n�, with n an integer �1,6�.
On adopting a standard �spectral� characterization of SR �1�,
in Fig. 4 we plotted the subtracted strength,

�S1 = lim
�→0
�

�−�

�+�

�S��� − S0����d� , �7�

of the most prominent peak with n=1 versus the noise inten-
sity D. Of course, all p.s.d. have been computed for the same
frequency bin, �, and the background densities, S0���, were
estimated by numerical interpolation.

The numerical curves reported in Fig. 4 do not show the
slightest evidence of double SR. This is no surprise as
�S1��� is known �1,13� to depend on a symmetric combina-
tion of the average residence times, TK

�, i.e., TK
+TK

− / �TK
+

+TK
−�. As a consequence, it is not possible to fine-tune D so

as to extract information regarding one-sided transitions,
only.

IV. CONCLUDING REMARKS

In the foregoing section, we have given numerical evi-
dence that intrawell asymmetry maybe indeed responsible
for the “SR splitting” reported in �9�. Such an effect is a
manifestation of asymmetric synchronization over an skewed
barrier �14�, with no spectral counterpart.

Of course, asymmetry effects are known to emerge also in
the spectral characterization of SR. We mentioned in Sec. I
that asymmetry causes the appearance of additional p.s.d.
peaks at even multiples of the drive frequency, and that the
strength of each peak exhibits a peculiar SR dependence on
D �6�. In this Brief Report, we simply ruled out the existence
of a spectral signature of the double SR effect.
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FIG. 3. �Color online� Degree of coherence in the ADW poten-

tial �1�: C+ �squares�, C− �triangles�, and C̄ �circles� vs D for dif-
ferent A �in the legend�. Vertical arrows locate the peaks, D� of C�.
Other simulation parameters: ���t /T�=0.1. �=0.2 and the ADW

parameters as in Fig. 1 Inset: dependence of the curves C̄�D� on �
and A.
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FIG. 4. �Color online� Subtracted strength �S1 of the first spec-
tral peak at �=� versus D for different A. Other simulation param-
eters: �=0.2 and the ADW parameters as in Fig. 1
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Finally, we also investigated the occurrence of double SR
in the presence of interwell asymmetry. Following �6,7�, we
studied the Langevin Eq. �2� for the case of a tilted symmet-
ric potential, V�x�=−ax2 /2+bx4 /4−A0x, with a ,b and A0
0. The corresponding coherence quantifiers C� peak for
different noise intensities, with D+D−, but their average,

C̄, shows no trace of “SR splitting.” Note that the tilt A0
tends to suppress �increase� the energy barrier opposing the

�→� transition and, simultaneously, to make the negative
�positive� well shallower �narrower�. Such modifications of
the initially symmetric potential have opposite bearing on the
D dependence the Kramers’ times TK

�, see Eq. �4�. We think
that this is the main reason why we were unable to detect
double SR in this class of ADW potentials, even if the op-
posite barrier transitions can be optimally synchronized �i.e.,
C� maximized� for distinct noise intensities.
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